(16+2x)=(x^2-4x)

Simple and best practice solution for (16+2x)=(x^2-4x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (16+2x)=(x^2-4x) equation:



(16+2x)=(x^2-4x)
We move all terms to the left:
(16+2x)-((x^2-4x))=0
We add all the numbers together, and all the variables
(2x+16)-((x^2-4x))=0
We get rid of parentheses
2x-((x^2-4x))+16=0
We calculate terms in parentheses: -((x^2-4x)), so:
(x^2-4x)
We get rid of parentheses
x^2-4x
Back to the equation:
-(x^2-4x)
We get rid of parentheses
-x^2+2x+4x+16=0
We add all the numbers together, and all the variables
-1x^2+6x+16=0
a = -1; b = 6; c = +16;
Δ = b2-4ac
Δ = 62-4·(-1)·16
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{100}=10$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-10}{2*-1}=\frac{-16}{-2} =+8 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+10}{2*-1}=\frac{4}{-2} =-2 $

See similar equations:

| 13m+–19m+8m=18 | | 3-2y=10+5y | | n-3/8=1 | | 8x-2=x+4x+10 | | 9x+3=4x+-5 | | 15x-2=62 | | 3(a-7)=14a | | 8c-16=0 | | (x+3)^-25=0 | | -5/2(x+6)+3x/2=-8 | | -24=-w/6 | | 2x+5x=3x+12 | | 2/3(m=2)+4/5 | | -75x=1.25x+4 | | 8t/8=72/ | | .25(8x-4)=10 | | 13/2x-5=5x-17 | | 3/10(x-3)=6 | | 15x-2=65 | | 15x-2=65° | | 10x+2=15x-13 | | -8c+10=0 | | 3c=14=28 | | 11x-1=9x+3 | | 15x-2=15x−2=10x+23 | | x+25=1+4x | | --8c+10=0 | | 3(5-2x)=9x2+9 | | 69x-2=67x+2 | | 45=6d=-45 | | S-1.7x=5 | | 4h−10=2 |

Equations solver categories